
Written by Keisha S. Perkins

Build a

JavaScript

Infinite

Runner

i

Table of Contents
Introduction .. 1

How to read this book 1

What is JavaScript? .. 1

What Is a Library? ... 1

What Are P5.js, P5.play, and P5.sound? 1

Let’s Start Coding ... 2

Setting Up Our Coding Environment 2

Linking To Our Libraries 2

Setting Up Our P5.Js Structure 3

Introducing P5.js ... 4

Creating the Canvas 4

Drawing a Circle .. 5

Understanding the Canvas Grid 5

Giving the Circle Color 5

Adding a Bit of Movement 6

Follow-the-Cursor: Built-In Functions 6

Automatic Movement: User-Defined
Variables .. 7

Declaring a variable 7

Assigning a value 7

One-Step Declaration and Assignment .. 8

Introduction To P5.play Sprites 9

Our First Sprite .. 9

The Preload Function 10

Adding Images and Animations 10

Conditional Statements 11

If Statement Syntax 11

How If Statements Work 11

Making Our Own Functions 13

Adding Platforms .. 13

Global vs. Local Variables (Scope) 15

Calling Functions .. 15

Adding Physics .. 16

Sprite Velocity ... 16

Collision Detection 16

Methods and Callbacks 17

Giving the Character Movement 18

Jumping .. 18

Running ... 19

Using the Virtual Camera 19

Garbage Collection ... 19

For Loops ... 20

For Loop Syntax 20

For Loop Execution 20

Platform Creation and Deletion 22

Background Art .. 22

Adding a Lose Condition 23

Checking for Falls 23

Adding Game Over Text 24

Restarting the Game 25

Adding the Finishing Touches 25

Point Counter .. 25

Updating Previous Functions 26

Adding Sound .. 27

Adding a Loading Screen 27

Styling Our Loading Screen and Page 28

Congratulations! ... 29

Resources for Further Learning 30

Further Challenges ... 31

1 | I T G i r l s 2 0 1 8

Introduction
Welcome to IT Girls 2018! At the end of this booklet, you’ll have coded your own JavaScript game!
We’ll learn the basics of JavaScript along with a few tools that help to make creating JavaScript
games easier. This booklet goes with a website: la-wit.github.io/build-an-infinite-runner. There you
will find source code for the whole project as well as code snippets to make building the game
easier. Whenever you’re asked to edit code, you can copy and paste the relevant text from this
webpage.

How to read this book
This booklet will use a few patterns to make reading it a bit easier.

Bold
Bold text will signify a new term. New terms will be followed by a contextual definition.

Blue Italic
Blue italic text will signify website URLs.

Constant Width

Red, constant width text will signify programming elements such as variable or function names,
statements, and keywords.

Highlighted text blocks will signify code that needs to be added or edited. It is highlighted to make
it easier to read and see its parts. In this booklet, any new code will be highlighted. Gray code will
signify code that has been added in a previous step and shouldn’t be changed. Ellipses (…) will
indicate that there is text in the code just before or after the code you are adding, but that the text
is not displayed again.

What is JavaScript?
JavaScript could be called the programming language of the web. Many of the websites you use
every day employ JavaScript to add interactivity, or make them respond to you when you use
them. JavaScript is a great programming language for beginners because of its ease of use as well
as the fact that it’s literally all over! We’ll be using JavaScript along with a few JavaScript libraries to
make our game.

What Is a Library?
A library prewritten code that has been packaged together and makes it easier to build programs
by taking care of some of the more difficult or time-consuming tasks programmers have to do.

What Are P5.js, P5.play, and P5.sound?
One of the libraries we’ll be using is called p5.js. It’s designed for artists and beginners to be able
to dive right in and make things! It’s the perfect library for us to use because it takes the guess

Highlighted text

2 | I T G i r l s 2 0 1 8

work out of making the pictures and movements we’ll need for our game. You can find out more
about p5.js at www.p5js.org. P5.js focuses mainly on the HTML canvas, a place that allows us to
draw right inside of the webpage’s screen. The canvas is made specifically for drawing and
displaying images on a page and is the perfect place for our game.

P5.js has extender libraries that will help us make our game even better in less time. One is
p5.play, which handles most of the physics we need for our game to work. The other is p5.sound,
which handles all the music and sounds we’ll need for our game. You can learn more about them
at p5play.molleindustria.org and www.p5js.org/reference/#/libraries/p5.sound.

Let’s Start Coding
Now that we’ve been introduced to the tools, let’s dive right in.

Setting Up Our Coding Environment
For this class, we’ll be coding on CodePen. CodePen is a place for web developers to show each
other their work online. We’ll be using it because it allows us to save our work on the cloud and
get up and running in a flash. CodePen has its own built-in text editor, or a computer program for
writing code.

Signing up for CodePen is easy:

1. Go to www.codepen.io

2. Click “Sign-Up” in the top right-hand corner

3. Put in your name, select a username, provide your email address, and choose a password.

4. Click “Submit”.

You can skip the “profile” portion of the sign-up by scrolling down and clicking “Save & Continue”.
Click the “Let’s Go” button to take the virtual tour of CodePen to familiarize yourself with the site.

Once we’ve taken the tour and are familiar with CodePen, we’re ready to begin coding. Let’s start a
new “pen,” or a new project. Click the “Create a New Pen” button at the end of the tour. For now,
we’ll be focusing on the JavaScript Section. You can make this section bigger by dragging its frame
to the left. We won’t be using the HTML and CSS section just yet, so feel free to make the
JavaScript section the only visible section.

As we start coding, we’ll sometimes make mistakes. CodePen has a feature that looks out for
mistakes we might not catch. While you’re coding, look out for the red error indicator () at the
bottom of your code windows. When you see it, it means that CodePen has spotted something
wrong. You can click on it to be taken to the error. Don’t feel discouraged if you make mistakes,
even professional programmers have to debug, or fix problems in their code!

Linking To Our Libraries
When we use a library or framework, we have to make sure to include it in our page. There are
several ways to link code to our webpages, but CodePen has a very convenient way of doing it.
From your pen screen, click “Settings” in the top-right corner. When the box pops up, click the

3 | I T G i r l s 2 0 1 8

“JavaScript” tab and paste the first three lines of code in the code snippets section of the webpage
into the boxes at the bottom. You may need to click the “add another resource” button to get a
third box. The documents we are linking to are copies of all the libraries we will need to make our
game.

You can also name your game and add a description to your pen from this menu. If you ever want
to rename your pen, come back to this menu to change the name or description.

Setting Up Our P5.Js Structure
P5.js has two main parts that make it work. They are the setup() and draw() functions.
Functions are blocks of code that are designed to do a set of tasks whenever they are called upon.
The setup() function is called once at the beginning of the program. We’ll put things here that we
want to tell the computer only once, like how big we want our game screen to be.

The draw() function is called over and over again. Our draw() function will be called 60 times
every second! We’ll put things in here that we want to tell the computer repeat, like where our
character is moving.

Add this to your JavaScript section.

This is what it looks like when we define, or create, a function. We first tell the computer that
we’re about to write a function with the function keyword. A keyword is a pre-defined word that
lets a programming language know something is about to happen. The function keyword lets
JavaScript know we are about to create a function.

function setup(){

}
function draw(){

}

2. Paste your code

1. Click the JavaScript tab

3. Name your pen

4 | I T G i r l s 2 0 1 8

After we’ve included the function keyword, we type the name of the function followed by
parentheses. Next, we put curly brackets. These curly brackets tell the computer where our
instructions start and stop.

Be sure to put all of the instructions inside of the proper brackets, or the computer may get
confused. Computers need to be spoken to very specifically. The specific way we talk to computers
is called syntax. Every programming language has its own syntax, or rules about how to talk to
the computer.

Did you notice the line after the two slash marks? It’s called a comment. A comment is a line of
code just for the developer that the computer ignores. Developers use comments all the time to
leave notes to themselves and others reading their code. A comment may be about what the code
does or why the developer made a particular coding decision or really anything that developer
thinks is important to include.

You start comments in JavaScript with two slashes. Things that follow on the line with the slashes
will be a part of the comment. It’s a good idea to comment your code. It can make it much easier
to read your code when you come back later. Try leaving yourself notes in the code explaining
what it means and what steps you are taking.

Introducing P5.js
As we found out earlier, p5.js is a JavaScript library. It is full of helpful blocks of code that make
things easier for us programmers. Let’s get a feel for how it works.

Creating the Canvas
The canvas is the area we’ll be drawing in. Let’s put one on the screen.

Add the following in your setup() function.

These new pieces of code are also functions they are the createCanvas() function and the
background() function. They’re built into p5.js so we don’t have to define them ourselves. They
take two and three arguments, respectively. Arguments are specific bits of information that a
function needs to know in order to work properly. The createCanvas() function needs to know
how wide and how tall we’d like the canvas to be. In this case, we’d like the canvas to be 840 pixels
wide and 390 pixels tall.

function setup(){
 createCanvas(840,390);
 background(200, 200, 200);
}
function draw(){
}

5 | I T G i r l s 2 0 1 8

We’ve also told the setup() function that we’d like the background of our canvas to be gray with
the background() function. It takes these three arguments to define a color. We’ll learn more
about how colors work in p5.js in a bit.

Drawing a Circle
P5.js makes drawing very easy with built-in functions for creating shapes. One of these is the
ellipse() function. The ellipse() function takes four arguments. The ellipse() function
needs to know where we’d like to draw the circle vertically, where we’d like to draw horizontally,
how tall we’d like the circle to be, and how wide we’d like the circle to be.

Add this in the draw() function.

We’ve just told the computer that we’d like to draw a circle 100px in from the left and 200px down
from the top. We’ve also told the computer that we want it to be 30px wide and 30px tall.

Understanding the Canvas Grid
The first arguments in our ellipse()
function tell where we’d like our circle to
be drawn. Their values correspond to
points on the canvas’s grid. Our particular
canvas has a grid that is 840px wide on
the X axis (horizontal, left to right) and
390px wide on the Y axis (vertical, up and
down). Let’s look at what a canvas grid
looks like.

Each number represents a pixel in the canvas. The top-left corner is zero on both axes and the
value goes up the farther you go to the right and the farther you go down. The example grid is
only 20px wide and 8px tall. If we say that a circle should be drawn at 4px over and 3px down, we
tell the computer to draw the circle’s center at the dot. Our game’s grid is much bigger, but the
concept is the same.

Understanding how to define things in relation to the canvas’s grid will be important to placing
elements on the screen in our game. Try playing around with these four numbers and see how it
effects the circle you’ve made.

Giving the Circle Color
Now that we have a circle, we can give it some color. Computers can read colors in many ways, but
we’ll be using color that is defined in three parts: red, green, and blue (RGB). The computer will
read the numbers we give it and add a certain amount of red, a certain amount of green, and a

function setup(){
 createCanvas(840,390);
 background(200, 200, 200);
}
function draw(){
 ellipse(100,200,30,30);
}

6 | I T G i r l s 2 0 1 8

certain amount of blue to our circle. The values for these colors can be from 0 to 255. Let’s see it
on our circle.

Add this to your code.

The fill() function tells the computer what color we’d like inside our circle. We just told the
computer we want the circle to have a red value of 23, a green value of 55, and a blue value of
100. The higher the value, the more of a color is in the final color. The higher all the values get, the
lighter the color gets.

If you set all three values to 255, the color will be
white. If you set all three values to 0, the color will
be black. If you set all three values to the same
value between 0 and 255 (like how we set all three
values to 200 for our background) will give you a
shade of gray. At this point, your preview window
should have a canvas with a circle like the one in
the picture to the right.

Experiment with the three color arguments and see what happens. Remember: the first value is
red, the second value is green, and the third value is blue.

Adding a Bit of Movement
Follow-the-Cursor: Built-In Functions
We know that the ellipse() function takes
arguments for where we want the circle to be drawn.
But what if we wanted the circle’s location to change?
We can do this with variables. A variable is a named
value in your program. Whenever you use the name in
the program, the computer uses the value you’ve
given the variable.You could create a variable called
fruit and give it the value apple. Then, if you tell the
computer to “display fruit,” it will display apple.

Variables are like stand-ins for something that isn’t set in stone, and they can change. So if you
change the value of fruit to pear and then tell the computer “display fruit,” it now will display
pear instead of apple.

P5.js has some variables that it automatically keeps track of. Let’s use two of them: mouseX and
mouseY. The mouseX variable keeps up with where the mouse is on the X axis. Following the same
pattern, mouseY keeps up with where the mouse is on the Y axis. Let’s try it. Replace the ellipse’s X
and Y arguments like this.

function draw(){
 fill(23,55,100);
 ellipse(100,200,30,30);
}

Here’s a tip!

There is a shorthand for using grayscale
in RGB. Because all the numbers will be
the same, you only have to write them
once. (255,255,255) can be written as
simply (255) and the computer will
know you want all the values to be 255.
You can try this out whenever you want
an element to be some shade of gray.

7 | I T G i r l s 2 0 1 8

Notice how the draw() function draws a circle wherever the mouse is. Even when you move the
mouse, the circle follows. It draws a new circle every time it executes. When a computer executes
code, it follows the instructions given to it, step by step.

Our program is executing the instructions “Draw a
new shape that is blue. The shape should be a
circle. The circle should be drawn where the mouse
is. The circle should be 30 pixels wide and tall.” The
result is that we see every circle that the draw()
function ever draws until we reload the page . It
should look something like the image on the right.

Automatic Movement: User-Defined Variables
We’ve learned how to use variables that are built-in. But what if we want to make our own? We can
make and edit our own variables by remembering three steps: declaration, assignment, and use.

When we declare a variable, we just tell the computer that the variable exists. Think of declaring
like putting a box on the table and letting the computer know it’s there.

When we assign a value to a variable, we tell the computer what value we’d like to give to the
variable. Think of assigning like putting something in the box. Whenever we use a variable, we’re
telling the computer we want the value from the box. Let’s look at some syntax for declaring and
assigning variables.

Declaring a variable

Assigning a value

Let’s see this in action. Edit your code like this.

var circlePosition;

function setup(){
 ...
 circlePosition = 100;
}
function draw(){
 ...
 ellipse(circlePosition, 200,30,30);
}

function draw(){
 fill(23,55,100);
 ellipse(mouseX,mouseY,30,30);
}

8 | I T G i r l s 2 0 1 8

We declare our new variable circlePosition at the very top with the var keyword. Then, inside
the setup() function, we assign a value of 100. Finally, inside the draw() function, we tell the
ellipse() function that we want the circle to be drawn at whatever value is inside the
circlePosition variable (100). You can change the value of circlePosition to whatever you
want it to be.

Often, declaration and initiation is done in one step. We’ll be declaring and assigning values both
ways in this lesson.

One-Step Declaration and Assignment

But we said we wanted the circle to move by itself, so let’s make that happen. In the draw()
function, edit your code like this.

This new code tells the computer to add one to the value
in circlePosition every time the draw() function
does its thing. This means that the value in
circlePosition will be just a bit higher than the last
time draw() finished executing its code, so the circle
moves over just a bit more.

Great! Now we’ve got movement, but what if we don’t
want that tail left behind? That’s a simple fix! Let’s just move our background() instructions from
the setup() function into the draw() function. Your code should now look like this.

This will tell the draw() function to first paint a gray background, then add one to the total in
circlePosition, and then paint the circle with a colored fill. The order that we put the
instructions in is important.

function draw(){
 background(200,200,200);
 circlePosition = circlePosition + 1;
 ...
}

function draw(){
 circlePosition = circlePosition + 1;
 ...
}

9 | I T G i r l s 2 0 1 8

Now the circle is moving across the screen! This is
because draw() updates the value for
circlePosition then draws a new circle using
that value. You can create variables to hold any
information you want. Variables are especially
good for any value you think might change in the
future.

Introduction To P5.play Sprites
Now it’s time to start building our game! We’ll
begin with another function. This one is built into
p5.play. The first thing we’ll need is a character to
run in our game. The character will be a sprite.

Sprites are the main building blocks of p5.play. Sprites are objects that are able to store images or
animations with a set of properties. Think of an object like a bag with other bags inside. The bags
inside are the object’s properties. They store facts about the object that we can edit and refer to,
just like we edit and refer to variables.

A sprite’s properties can change in the same way that variables can change. This will be important
for making our sprites behave the way we want them to. Just about everything we make in our
game will be a sprite.

Our First Sprite
Let’s make the very first sprite in our game. This one will represent our character. We’ll call the
sprite “runner.” Let’s clear out our setup() and draw() functions and then add code like this.

Our sprite is just a box right now, but we’ll give it some
flare shortly. The createSprite() function takes four
arguments. They tell where you’d like the sprite drawn on
the X axis and Y axis, and how tall and wide you want it.
Our sprite is drawn at 50px in from the left and 100px
down from the top. The sprite is 25px wide and 40px tall.
We created the sprite in the setup() function because
we only need the sprite created once.

var runner;

function setup(){
 createCanvas(840,390);
 runner = createSprite(50,100,25,40);
 runner.depth = 4;
}

function draw(){
 background(200);
 drawSprites();
}

Here’s a tip!

When a function executes, it goes down the
function, following instructions one-by-one.
We have to pay attention to what order we
put things in because some instructions
override others. In our example before, we
want the computer to draw a new
background before it draws a circle. That’s
why we put it at the top of the instructions.

10 | I T G i r l s 2 0 1 8

The Preload Function
Along with the setup() and draw() functions, p5.js has a function made especially for if you
have a lot of images and files to load. This function is called preload(). This function loads
everything defined inside of it before it executes the rest of the code. This is where we’ll tell our
program where to find the images we’ll be using in our game. Let’s add the function to our code
like this.

Adding Images and Animations
All the images and media you need for this game are hosted on the accompanying website from
earlier: la-wit.github.io/build-an-infinite-runner.

Select a character, and environment that you’d like for your game. Once you’ve chosen, click the
“Show Code” button for both and then copy and paste it into your preload() function. Don’t
forget to declare your variables at the top!

This code is telling the computer to load all the images we need to animate our character and
store them in the variables runningAnimation and jumpingAnimation. It also stores the
images we need for our environment in gameBackground and platformBackground. There are
some other variables assigned here, too. But we’ll get to those later. We’ll put all the media we
need for our game into the preload() function so that we can be sure everything is loaded
before the game starts.

The code we just put in the preload() has all the images we’ll use to make the character appear
to run and jump. Let’s add the animations to the character’s sprite, kind of like putting the
animations in the character’s bag. Add this to your setup() function.

var runner;
var runningAnimation;
var jumpingAnimation;
var gameBackground;
var platformBackground;
var gameFont;
var gameMusic;
var gameOverMusic;
var jumpSound;

function preload(){
 [The code you copied from the website goes here.]
}

var runner;

function preload(){

}
function setup(){
 ...
}
function draw(){
 ...
}

11 | I T G i r l s 2 0 1 8

Do you see how the character never stops running?
This because the “run” animation was the last
animation that we set. The animation is set to loop
forever. We could stop this, but we don’t want to just
yet because we want him to just keep running. This
booklet will use the “Puppy” character.

Conditional Statements
Sometimes we want to know whether or not something is true before we do an activity. For
instance, you may want to know whether or not it is cold outside before you put on a coat and
leave your house. This happens in coding, too. When we’d like to check things, we add conditional
statements—statements that ask if something is true or false—to our code. We’ll be using an
if statement, a type of conditional statement. If statements usually look like this:

If Statement Syntax

If statements begin with the keyword if followed by parentheses. Inside the parentheses, we
put whatever it is we want to check. Then, we add a set of curly brackets with instructions inside.
The computer will only do the things inside the brackets if the things inside the parentheses are
true.

How If Statements Work

function setup(){
 createCanvas(840,390);
 runner = createSprite(50,100,25,40);
 runner.addAnimation('jump', jumpingAnimation);
 runner.addAnimation('run', runningAnimation);
 runner.setCollider('rectangle', 0,0,10,41);
}

12 | I T G i r l s 2 0 1 8

Condtional statements use comparison and logical operators, symbols that say what they are
testing. The if statement above, for instance, uses three equal signs (===) to show that it’s looking
for a value that is exactly Friday. Below is a chart of comparison and logical operator symbols
used to define conditional statements. You’ll find yourself using them often when you program.

Let’s see an if statement in action. Replace the code in your draw() function with this.

Okay, here are two new conditional statements. The second one asks if gameOver is true. Notice
how the first conditional statement has a ! (sometimes nicknamed a bang) just before gameOver.
In conditional statements, a bang is called a logical not operator and means that whatever is
behind should be taken as the opposite. So the second statement is asking if gameOver is true
while the first statement is asking if gameOver is not true. See it in the comparison operators
chart? Note: The background() function has moved to inside the !gameOver condition. We only
need that background while the game is still being played.

But how will the computer know if gameOver is true or not? We’ll tell it! Let’s declare a new
variable at the top and assign its value to false. We call the values true and false Booleans, or
values that can only be true or false. Booleans are great for setting conditions that have only
these two options.

Define and assign the variable like this at the top of your code.

What happens if you set it to true instead? The animations stop. This is because we’ve only told
the computer to draw sprites if gameOver is set to false.

var gameOver = false;

function draw(){
 if(!gameOver){
 background(200);

 drawSprites();
 }
 if(gameOver){
 }
}

Comparison and Logical Operators
Operator Name Example Evaluates to
> Greater than 5 > 3 3 > 10 7 > 7 true false false
>= Greater than or equal to 5 >= 3 3 >= 10 7 >= 7 true false true
< Less than 5 < 3 3 < 10 7 < 7 false true false
<= Less than or equal to 5 <= 3 3 <= 10 7 <= 7 false true true
=== Strictly equal to 5 === 3 7 === 7 7 === "7" false true false
! Not 5 !< 3 12 !== 12 1 !< 4 true false false

13 | I T G i r l s 2 0 1 8

Making Our Own Functions
We’ve used functions that were already part of
p5.js and p5.play. But just like variables,
sometimes we’ll need to make our own.

Remember, functions begin with the function
keyword and then the function’s name
followed by parentheses. Remembering this
syntax is important to making our functions
work. If we didn’t include these parts,
computer would become confused.

Adding Platforms
At this point, we’ve got a character running in place, but what will our character run on? We’ll need
some platforms. Let’s create a new group.

In p5.play, groups are arrays that hold sprites. Arrays are very similar to objects. The main
difference between objects and arrays for our purposes is that the things inside of an array go in a
specific order while things inside of objects don’t have a particular order.

Instead of them being bags with contents loose inside, arrays are like orderly boxes. Their content
has a specific order and a specific place. We’ll use a group array to hold all the platforms we’ll be
making. Edit your setup() function like this.

We’ve just told the computer to make an array called platformsGroup to hold our platforms.
Let’s add a function with an if statement that will add platforms to our game. We’ll add the
function just below the draw() function. Edit your code like this.

var currentPlatformLocation = -width;

function draw(){
 ...
 addNewPlatforms()
}
function addNewPlatforms(){
 if(platformsGroup.length < 5){
 var currentPlatformLength = 1132;
 var platform = createSprite((currentPlatformLocation * 1.3),
random(300,400), 1132, 336);
 platform.collide(runner);
 currentPlatformLocation += currentPlatformLength;
 platform.addAnimation('default', platformBackground);
 platform.depth = 3;
 platformsGroup.add(platform);
 }
}

var platformsGroup;
function setup(){
 ...

 platformsGroup = new Group;
}

 Here’s a tip!
Have you noticed that almost every line we type
ends in a semicolon? This is a part of JavaScript’s
syntax. JavaScript pays no attention to spaces or
line breaks, so semicolons are its signal that a
command is over. They’re kind of like how
periods end statements in English.

14 | I T G i r l s 2 0 1 8

We’ve just declared a new function that uses an if
statement to determine when we’d like to add a new
platform.

The function only executes if the amount of platforms in
platformsGroup is less than 5. If at any time there are
five or more platforms, the function will not execute its
instructions. Your game should look something like
picture to the right at this point.

We’ve given the computer a lot of instructions inside this function. Let’s list them in order using
pseudocode. Pseudocode is notation that somewhat resembles code, but is not necessarily in a
language the computer can read. We use pseudocode when designing programs because it helps
us to think about what we’d like to tell the computer before we focus on syntax. Here is the
addNewPlatforms() function in pseudocode.

Did you notice the strange notation when we told the computer to add the value of
currentPlatformLength to the value of currentPlatformLocation? This is called a
compound assignment operator and it is a shorter way of saying “add a certain number to the
value in this variable, assign the sum as the new value of the variable.”

There are other compound assignment operators, not just for addition. You can subtract, multiply,
divide and more, but we’ll only be using the compound assignment operator for addition in our
game. In programming, the need to add to the total inside of a variable comes up a lot, so often
that this shortcut was made so programmers could code it easier.

Let’s see this concept in practice. If you were to write something like this…

The value of total would be 15, not 5. We’ll be using this operation more as we continue to make
our game. Perhaps you remember how we used the long form of this operation when we first
made the circle move. You’ll find that you use it often when you code your own programs.

var total = 10;
total += 5;

If there are less than five platforms inside of platformsGroup:
1. The value for ‘currentPlatformLength’ is 1132.
2. Create a platform sprite and put it in the variable ‘platform’

a. The sprite should be 1.3 times as far from the left as the one
before it.

b. The sprite should be anywhere between 300 and 400 pixels down
from the top.

c. The sprite should be 1132 pixels wide and 336 pixels tall.
3. Make the platform aware of the runner character.
4. Add the value of currentPlatformLength to the value of

currentPlatformLocation (defined at the top of the code).
5. Add an animation to the platform sprite called ‘default’ that uses

the platformBackground variable.
6. Put the platform at level 3 in layer order.
7. And finally, add the sprite that was just created to the

platformsGroup array.

15 | I T G i r l s 2 0 1 8

Global vs. Local Variables (Scope)
Notice that we declare and initialize currentPlatformLength inside of the
addNewPlatforms() function. This is because we only need the variable inside the function. The
variables we are declaring at the very top are called global variables, or variables that are
accessible to all of the program’s code. The variable currentPlatformLength is only accessible
to the code inside of the addNewPlatforms() function. It is a local variable, or a variable that is
only available in the code block it was declared in. We make decisions on where to define variables
based on if we want all the code to have access to it or if we just want some of the code to have
access to it. The set of rules that determine which functions have access to a variable is called the
variable’s scope.

We don’t need to use currentPlatformLength anywhere but inside of the
addNewPlatforms() function, so we define it inside there. We’ll need variables like
currentPlatformLocation in a few functions, so we make sure to declare it on the outside, so
all the functions can use it.

Also notice that we’ve initialized currentPlatformLocation as –width. The variable width is
a built-in variable in p5.js. Its value is the width of our canvas. There is also a height variable that
we’ll be using later. Here, we’ve told the computer that the value for currentPlatformLength is
the negative of whatever our canvas’s width is. This will cause the computer to draw our first
platform centered on that value (in this case -840). This way, the first platform will be generated
under the runner with lots of space for him to land.

Calling Functions
You may have noticed that we’ve been including functions by typing their names followed by
parentheses wherever we want to execute them. This is known as calling a function, or instructing
the computer to use the function, along with any arguments the function needs. We’ve called the
ellipse()function, the createCanvas() function, and others. Now we’ll call the
addNewPlatforms() function we just wrote.

Edit your draw() function like this.

Now the draw() function’s instructions include all of the instructions inside of the
addNewPlatforms() function!

We could have just written everything directly into the draw() function, but putting it into a
separate function makes it easier to use the instructions in multiple places and move the
instructions around.

function draw(){
 ...
if(!gameOver){
 background(200);
 addNewPlatforms();

 drawSprites();
 }
}

16 | I T G i r l s 2 0 1 8

This idea of packaging a program into small pieces that allow us to add them many times
wherever we want is called modularity. It’s a good practice to make your code as modular as
possible. It makes your code easier to read and edit.

Adding Physics
We’ve got some basic building blocks of our game: platforms and a runner. But our runner is just
floating there, running on nothing. Let’s add some gravity and jumping power to make the game
really work!

Sprite Velocity
In p5.js, every sprite has a property called velocity. The velocity determines if a sprite should move
when the draw() function executes. The velocity property has two parts: X and Y. These
correspond to the sprite’s position on the X axis and the Y axis. If a runner has an X velocity of 1, it
will move one pixel to the right every time the draw function executes. We saw something similar
to this when we made our little circle move across the screen at the beginning of the lesson.

In order to simulate gravity, we will use the velocity property of our runner sprite. Edit your code
like this.

Above, we declare and define gravity as a global variable with a value of 1. Then, we tell the
draw function to add to our runner’s Y velocity by a rate of whatever the value of gravity is (in this
case, 1). This way, the characters falls faster the longer he falls, similar to how objects fall in real
life.

Collision Detection
Great! Now our character has the force of gravity pulling him down. But he just fell right on past
the platform! We need to add what’s called collision detection. Collision detection is how the
computer knows when objects are touching.

Collision detection can sometimes be very complicated to code, and there are many ways to do it.
Fortunately for us, we’re using p5.play! P5.play has built-in collision detection. Let’s add it to our
code. Edit your draw() function like this.

function draw(){
 if(!gameOver){
 ...

 runner.collide(platformsGroup, solidGround);
 addNewPlatforms();
 drawSprites();
 }
}

var gravity = 1;

function draw(){
 if(!gameOver){
 background(200);
 runner.velocity.y += gravity;

 drawSprites();
 }
}

17 | I T G i r l s 2 0 1 8

Methods and Callbacks
Methods
In p5.play, collide() is a method that all sprites have. A method is a function that belongs to a
particular object. Remember our bag analogy? Methods are functions that live inside of one of the
bags in the sprite. The collide() method detects if the sprite collides with another sprite or
group of sprites.

P5.play makes sure that every sprite we create can use the collide() method. If collide()
looks familiar, it’s because we put it in our addNewPlatforms() function to make sure each
platform was aware of our runner.

Let’s take a look at the arguments that the collide() method needs from us. The first argument
is the sprite or group of sprites we want to detect collisions with. We’ve told the computer that we
want to detect any collisions runner makes with any sprites in the platformsGroup array.

Callbacks
The second argument is special. It is the name of a function we want to call whenever the
computer detects a collision between runner and platformsGroup. When a function or method
is used as an argument in another function or method, it is called a callback.

Basically, we use callbacks when we want to “call back” to a function when a particular thing
happens. The calling is always done by another function. It’s as if the collide() function is saying
“I will call solidGround() back when I detect collisions so that it can execute its instructions.”

Callbacks have lots of uses in programming. We’re using this one to tell the computer what we
want to happen the moment runner collides with platformsGroup. We want it to execute the
solidGround() function.

So now the computer knows that we want it to run solidGround() as soon as it detects a
collision between runner and platformsGroup. But we haven’t defined that function yet. No
worries, we’ll do it now! First, let’s think about what a function like solidGround() would need to
tell the computer to do. Let’s write it out in pseudocode.

These instructions will be just what our game needs to make sure our character interacts with the
platforms correctly. Now let’s code it. Add this function just after the addNewPlatforms()
function at the bottom of your code.

If the player falls below the canvas:
1. Stop the runner sprite from moving down.
2. Change the animation to make the runner look like he’s running.
3. Check if the runner sprite has anything touching it on the right side,

because that would mean it hit a wall.
a. If it does, make sure the runner sprite doesn’t move forward.
b. Also, make sure the runner sprite falls if he hits a wall.

18 | I T G i r l s 2 0 1 8

Giving the Character Movement
Jumping
Now our character is running in place on the platform. But we know he’ll need to jump. Let’s add
some keyboard inputs so that when we hit a specific key, he jumps. We’ll put the instructions in a
function we’ll jumpDetection() As usual with when we design functions, let’s think about it in
pseudocode first so we make sure we get the behavior right.

This function will allow our character to jump. We’re going to use a built-in p5.play method called
keyWentDown(). This function detects if someone pressed a key and returns a value of true or
false. By putting it in the draw() function with the key we are watching for (UP_ARROW) as an
argument, we tell the computer to check for the UP_ARROW being pressed every time the function
executes. Add this to your code.

Great! Now when we press the UP_ARROW key, our character jumps! Notice how his animations
change to a jumping animation when he’s in the air, but go back to a running animation once he
lands on a platform. This is because we specified that he should have a running animation in our

var jumpPower = 15;

function draw(){
 if(!gameOver){
 ...
 jumpDetection();
 drawSprites();

 }
}

function jumpDetection(){
 if(keyWentDown(UP_ARROW)){
 runner.changeAnimation("jump");
 runner.animation.rewind();
 runner.velocity.y = -jumpPower;
 }
}

If someone presses the UP_ARROW key
1. Change the animation so that it looks like he’s jumping.
2. Once the animation has been played once, go back to the beginning, stop.
3. Change the runner’s velocity on the X axis by the value in the variable

“jumpPower” (defined at the top of the code).

function addNewPlatforms(){
 ...
}
function solidGround(){
 runner.velocity.y = 0;
 runner.changeAnimation("run");
 if(runner.touching.right){
 runner.velocity.x = 0;
 runner.velocity.y+= 30;
 }
}

19 | I T G i r l s 2 0 1 8

solidGround() function, and we said that he should have a jumping animation in our
jumpDetection() function.

Running
So far our character has been running in place. Let’s make him run for real. (We are building an
infinite runner after all!) Adding forward velocity will be easy. It just takes a couple lines of code.
Edit your code function like this to get your character moving.

Now our runner’s velocity on the X axis is changed to the value of runnerSpeed. We put the value
in a variable to make it easy to change whenever we want.

Using the Virtual Camera
Whoa! Our character ran right off of the screen! We need to make sure we can see him at all
times. This is where the p5.play virtual camera comes in. The virtual camera takes care of scrolling
and zooming for scenes extending beyond the canvas.

Telling the camera to follow our character will be easy. We can just tell the computer to make the
camera’s position on the X axis the same as the character’s position on the X axis, plus 300 pixels.
The result will be that our runner stays just left from the center of the screen at all times. We’ll just
need one line of code. Edit your draw() function code like this.

Garbage Collection
Now we have a somewhat playable game. But there’s
another problem. We don’t have enough platforms.
Our addNewPlatforms() function only generated five
platforms and stopped.

We need to make more platforms, but since we don’t
want to have an infinite number of platforms clogging
up our computer’s processing power, we’ll have to do
something called garbage collection.

function draw(){
 if(!gameOver){
 ...
 camera.position.x = runner.position.x + 300;
 drawSprites();
 }
}

var runnerSpeed = 15;

function draw(){
 if(!gameOver){
 runner.velocity.y += gravity;
 runner.velocity.x = runnerSpeed;
 ...

 }
}

20 | I T G i r l s 2 0 1 8

Garbage collection is the process of collecting and removing objects that are no longer being used
by a program. Garbage collection is important to almost all programming applications. Our
garbage collection will focus on removing platform sprites once they are no longer being used.
We’ll write a function called removeOldPlatforms() to take care of this for us. Time for some
pseudocode!

For Loops
We want the computer to check every platform in the platformsGroup array. When we want to
go over every item in a certain array or we want to do something over and over again, we use
loops. A loop is a series of instructions that are repeated until a certain condition is met. In our
loop, we will repeat the command to check to see if the platform has been passed. It will keep
checking platforms until it runs out of platforms to check.

The particular type of loop we will use to do this is called a for loop. A for loop is used to repeat a
section of code certain number of times. Sometimes we know exactly how many times we want it
repeated. Sometimes we aren’t sure how many times we need to loop, so we use a certain
condition as a stopping point. Either way, there’s a definite stopping point for the loop.

Let’s look at what a for loop looks like. These loops begin with the for keyword followed by
parentheses. Inside of the parentheses we have some instructions.

For Loop Syntax For Loop Execution

The above loop will first check if the variable i is less than 5. If it is, the loop will execute the code
inside the brackets. When it finishes executing, it will add 1 to the value of i. Let’s add a function
that contains a for loop that will create platforms for us. We’ll add it just below the draw()
function.

Check every platform in platformsGroup
 If any of them have already been passed up:

1. Remove that platform from the game.

21 | I T G i r l s 2 0 1 8

We check to see if a platform has been passed by checking to see if the platform’s position is at
least twice as far away from the runner as the width of the canvas. When the computer finds a
platform that has been passed up, it removes it from the group.

Notice how we put i in brackets following
platformsGroup. This is because putting a
number in brackets after the name of an array
accesses the item in that position on the array.

Because i has a value of 0, and a value of one
higher every time the loop executes, by putting i
in the square brackets, we are asking the loop to
check each platform one by one. When we say
platformsGroup[2] we are saying we want the
item inside the 2 position of platformsGroup.

We’ve also got a new shorthand. Notice the i++ at
the end of the for loop’s syntax. That is called an increment operator. It just tells the computer to
add one to the value of whatever variable you put it at the end of. It’s like the compound
assignment operator we learned about earlier in that it’s a shortened way of using an operation
that comes up a lot in programming. There is also a decrement operator (--). It tells the
computer to subtract one.

So with our loop deleting platforms that have been passed up, the total number of platforms falls
below 5. This triggers our addNewPlatforms() function to add a new platform. The cycle goes on
forever with one function deleting and the other function creating. Now we have infinite platforms
without slowing down our game. Don’t forget to call the function in draw()!

For as long as the value of "i" is less than the amount of things inside
“platformsGroup”, do the following then add 1 to "i":

1. Check to see if the platform in position that corresponds to the value
of “i” have been passed up.

a. If it has, remove it from the platforms group

function draw(){
 if(!gameOver){
 ...
 removeOldPlatforms();
 drawSprites();
 }
}
function removeOldPlatforms(){
 for(var i = 0; i<platformsGroup.length; i++){
 if((platformsGroup[i].position.x) < runner.position.x-width){
 platformsGroup[i].remove();
 }
 }
}

Here’s a tip!

The variable we’ve defined as i can have any
name you want, but most people use ‘i’
which is short for ‘iterator.’ This is what’s
called a coding convention, or a way that
most people do it, even though there are no
rules saying you have to. We use conventions
to help us understand each other’s code.

22 | I T G i r l s 2 0 1 8

Platform Creation and Deletion

Background Art
So far the background has been blank; let’s fix that. We’ll add the background in looping panels
the same way we added our platforms. We’ll change some values to match the background better.
For instance, we won’t be using a random number for the sprites’ locations. We know that we
always want the background in the same place. We’ll also be using a different width for the
background sprites because the image we’ll be using has a different background width.

Just like we deleted the old platforms, we’ll need to delete background sprites that have been
passed up. So we’ll be adding two new functions: addNewBackgroundTiles() and
removeOldBackgroundTiles() Declare your variables and call the functions like this.

Then add the two functions like this. Can you see how they are very similar to the plaform
functions?

var currentBackgroundTilePosition;
var backgroundTiles;
function setup(){
 ...
 backgroundTiles = new Group;
 currentBackgroundTilePosition = -width;
}
function draw(){
 if(!gameOver){
 addNewBackgroundTiles();
 removeOldBackgroundTiles();
 drawSprites();
 }
}

23 | I T G i r l s 2 0 1 8

Adding a Lose Condition
Right now, if our character falls below the game screen, he just keeps falling. But now it’s time put
some functionality into the if(gameOver) section of our code! We want to show the player that
the game is over and allow them to start over without refreshing the page. Let’s think about how
we’d make this happen.

Checking for Falls
The first thing we would need is to tell the computer is what to do if runner falls too far down.

This is what that function will look like. We’ll name the function fallCheck(). Edit your code like
this.

function draw(){
 if(!gameOver){
 fallCheck();
 drawSprites();
 }
}
function fallCheck(){
 if(runner.position.y > height){
 gameOver = true;
 }
}

If the runner sprite falls below the canvas
1. The game is over, so set gameOver variable to true

function addNewBackgroundTiles(){
 if(backgroundTiles.length < 3){
 currentBackgroundTilePosition += 839;
 var bgLoop = createSprite(currentBackgroundTilePosition, height/2, 840, 390);
 bgLoop.addAnimation('bg', gameBackground);
 bgLoop.depth = 1;
 backgroundTiles.add(bgLoop);
 }
}
function removeOldBackgroundTiles(){
 for(var i = 0; i < backgroundTiles.length; i++){
 if((backgroundTiles[i].position.x) < runner.position.x-width){
 backgroundTiles[i].remove();
 }
 }
}

24 | I T G i r l s 2 0 1 8

Adding Game Over Text
Next, we need to tell the person playing the game that the game is over. We’ll use p5.js text
objects for this. Just like p5.js makes drawing circles easier with the ellipse() function, p5.js
makes manipulating and displaying text on a canvas much simpler with various text functions.

This is what that function would look like. We’ll name the function gameOverText(). We’ll also tell
the computer to stop drawing sprites with a built-in p5.play function called updateSprites().
This is a function that is automatically called whenever draw() executes. We can pause stop the
function from updating any sprites by giving it a false argument. Edit your draw function like this.

When defining text in p5.js we have to remember to be very aware of the order we define things
in. The rules for stroke(), fill(), and textSize() effect any text that follows them. So when
we want to change those values, we have to be sure to only put the things we want to change
beneath them the rules we want to set. Otherwise, the text would look different than we intended.
Define your code like this.

Notice anything new about the way we
defined that background value? There
are four values and not three! This
value is the color’s alpha, or
transparency. A value of 10 makes the
background slightly see-through. This
way, the screen gradually gets darker
until it’s black. Because it’s adding
slightly see-through backgrounds on

function draw{
 if(gameOver){
 gameOverText();
 updateSprites(false);
 }
}

function gameOverText(){
 background(0,0,0,10);
 fill('white');
 stroke('black')
 textAlign(CENTER);
 textFont(gameFont);

 strokeWeight(2);
 textSize(90);
 strokeWeight(10);
 text("GAME OVER", camera.position.x, camera.position.y);
 textSize(15);
 text("Jump to try again", camera.position.x, camera.position.y + 100);
}

1. Darken the canvas.
2. Display in large letters, “Game Over.”
3. Display in smaller letters, “Jump to restart.”

25 | I T G i r l s 2 0 1 8

top of each other. Here, defining this transparency is just a matter of taste, you can change that
value to whatever color and alpha you like.

Restarting the Game
Now we need to write a function for restarting the game after the player loses.

This is what that function would look like, we’ll call it newGame(). Add it to the bottom of your
code like this.

This function resets any variables that may have changed while someone was playing the game. It
clears all the sprites we no longer need, and starts the game over again.

We’ll tell the computer to execute the newGame() function if someone presses the UP_ARROW.
We’ll be sure to call the newGame() function inside of the gameOver condition in our draw()
function. This way it only executes if gameOver is true. Let’s add it to our code like this.

Adding the Finishing Touches
Point Counter
Most people want a way to keep up with their score when they play a game. In our game, progress
will be measured in “yards” and players will get a point every second. We’ll need a function that
keeps up with how long our little character has run before falling. The function will display the
player’s score to anyone playing the game. Edit your code like this.

function draw{
 if(gameOver){
 ...
 if(keyWentDown(UP_ARROW)){
 newGame();
 }
 }
}

function newGame(){
 platformsGroup.removeSprites();
 backgroundTiles.removeSprites();
 gameOver = false;
 updateSprites(true);
 runnerSpeed = 15;
 runner.position.x = 50;
 runner.position.y = 100;
 runner.velocity.x = runnerSpeed;
 currentPlatformLocation = -width;
 currentBackgroundTilePosition = -width;
}

1. Remove all the platforms and background tiles.
2. Set “gameOver” to false.
3. Start animating again.
4. Reset the runnerSpeed variable.
5. Reset the runner’s position on both axes.
6. Reset the location of the platforms and background tiles.

26 | I T G i r l s 2 0 1 8

This function tells the computer to add one to
playerScore every 60 frames. And because the
draw() function creates a frame 60 times every second,
players get one point every second the character is still
running.

The function is keeping up with the seconds by using the
modulus operator. The modulus operator (sometimes
called the remainder operator) returns the remainder of two numbers. So in our if statement
above, we asked the computer to divide the value of the frameCount variable (which is built into
p5.js) by 60. Remember, we said that the draw() function loops 60 times every second. If there is
a remainder of 0, we know that another second must have passed.

Updating Previous Functions
Now that we have a playerScore variable, we can display it at the end of the game with the rest
of our game over text. Edit your gameOverText() function like this.

We’ll also need to reset it when a player restarts the game. Edit your newGame() function like this.

function newGame(){
 ...
 playerScore = 0;
}

function gameOverText(){
 fill('white');
 ...
 textSize(20);
 text("You ran " + playerScore + ' yards!', camera.position.x,
camera.position.y + 50);
}

var playerScore = 0;

function draw(){
 if(!gameOver){
 drawSprites();
 updateScore();
 }
}
function updateScore(){
 if(frameCount % 60 === 0){
 playerScore++;
 }
 fill('white');
 textFont(gameFont);
 strokeWeight(2);
 stroke('black');
 textSize(20);
 textAlign(CENTER);
 text(playerScore, camera.position.x + 350, camera.position.y + 160);
}

27 | I T G i r l s 2 0 1 8

Adding Sound
Our game is looking good, but it’s silent. Let’s fix that. You may have noticed that there are a
couple variables we haven’t addressed yet: gameMusic and gameOverMusic. These store the
sounds we have in our game. The files for each are already a part of your code, so let’s add playing
them to our game’s instructions. For this, we’re using our third library, p5.sound!

We’ll need to do five things:

1. Play our game music when the game starts

2. Stop the game music when the player loses

3. Start the game over music when the player loses

4. Stop the game over music when the player resets the game

5. Restart the game music when the player resets the game.

That’s a lot of music starting and stopping, but p5.sound makes it easy! We’ll be editing our
setup(), fallCheck() and newGame() functions. Edit your code like this to get the tunes going.

Adding a Loading Screen
Our game has been displaying the default loading screen that comes with p5.js. Have you noticed
the "Loading..." message you've been getting as you edit your game?

Adding our own loading screen is very easy, we’ll just need to add a few lines of code to the HTML
and CSS sections of our pen. Edit your HTML section like this.

function setup(){
 ...
 gameMusic.play();
}
function fallCheck(){
 ...
 gameMusic.stop();
 gameOverMusic.play();
}
function newGame(){
 ...
 gameOverMusic.stop();
 gameMusic.play();
}

<div id="p5_loading" class='loading-screen'><p>LOADING</p></div>

28 | I T G i r l s 2 0 1 8

Styling Our Loading Screen and Page
This tells p5.js that you would like to display something other than the default loading screen. Edit
you CSS section like this to tell the computer exactly how you’d like the loading screen and
webpage to look.

Your game should now be centered with a new background. Looking good!

body {
 background: #777;
 background: url('https://la-wit.github.io/build-an-infinite-
runner/build/images/bg.png') repeat;

}
canvas {
 position: absolute;
 top: 50%;
 left: 50%;
 -webkit-transform: translate(-50%, -50%);
 transform: translate(-50%, -50%);
}
.loading-screen {
 background: black;
 min-width: 840px;
 min-height: 390px;
 color: white;
 position: absolute;
 top: 50%;
 left: 50%;
 font-size: 2rem;
 -webkit-transform: translate(-50%, -50%);
 transform: translate(-50%, -50%);
 display: -webkit-box;
 display: -ms-flexbox;
 display: flex;
 -webkit-box-pack: center;
 -ms-flex-pack: center;
 justify-content: center;
 -webkit-box-align: center;
 -ms-flex-align: center;
 align-items: center;
 align-text: center;
}
.loading-screen p {
 -webkit-animation: pulse 1s linear 2s infinite alternate;
 animation: pulse 1s linear 2s infinite alternate;
}
@-webkit-keyframes pulse {
 0% { opacity: 0; }
 100% { opacity: 1; }
}
@keyframes pulse {
 0% {
 opacity: 0;
 }
 100% {
 opacity: 1;
 }
}

29 | I T G i r l s 2 0 1 8

Congratulations!
You did it! Your game is now complete! We’ve learned so much about using JavaScript to program
games. We learned about how to create variables and use them to store our information. We
learned about how to make our code reusable and orderly. We’ve learned about using JavaScript
libraries to make programming easier. We’ve learned a great deal! But this is only the beginning of
what you can make in JavaScript and only the beginning of what you can create!

30 | I T G i r l s 2 0 1 8

Resources for Further Learning
This class was a great introduction to JavaScript and p5.js and other libraries, but there’s much
more to learn and make. Here is a list of great resources to keep you coding well past today! Some
of the links in this list have been shortened to make typing them in a bit easier.

P5.js Website
p5js.org
The official website for p5.js is a great resource for understanding how the library works from the
built-in functions and variables to interactive examples. Poke around the website and learn a bit
more about this wonderful framework!

P5.play website
http://p5play.molleindustria.org
Here you can find great reference for the framework and great examples of how to use p5.play.
Try looking at the examples pages and poking around with some of the code. You can learn a lot
about how to create with the framework there.

Daniel Shiffman’s Coding Train
https://goo.gl/ExROND
Daniel Shiffman is a programmer who runs a wonderful YouTube channel full of great
programming tutorials. He has some very good videos using p5.js that start from the ground up.
The link below is to a group of playlists on his channel. Though all of the videos in this link will be
about p5.js, check out some of his other videos involving Java and programming in general.

Level Up Tutorials: How to Make Your First Website Series
https://goo.gl/NWzCLm
We didn’t focus much on HTML and CSS. But they are very important in an internet-driven world.
This video series takes you through the steps of making your very first website from the ground
up. The site you’ll build with this series will be very basic but will teach you the fundamentals of
web development.

31 | I T G i r l s 2 0 1 8

Further Challenges
You’ve completed your game! Congratulations! If you’re still looking for a challenge, how about
these additions? You can find some solutions on the website. Remember, there is almost always
more than one way to solve a challenge in coding. Think about how you’d solve each of these
challenges and try to implement these changes. When you’re ready, you can see a possible
solution.

Progressive Difficulty
Right now, your character runs at a steady speed. But what if you want him to run a little faster as
time goes on? You know how to add to a variable, and you know that our player’s speed is a
variable. So how would you add to the speed variable as time went on? Tip: runnerSpeed doesn’t
need to change much for you to notice the effect. Try increasing it by very small numbers,
decimals even.

Mobile-Friendly Play
We built this game for computers with keyboards. But suppose you want to show your friends on
the run? P5.js has a function call touchStarted() that works a lot like keyWentDown() but
detects touchscreen touches instead of keys on a keyboard. How can you use touchStarted()
to make your game take touchscreen inputs? What actions would you trigger with
touchStarted()? Find out more about the touchStarted() function at
p5js.org/reference/#/p5/touchStarted.

Jumping Sounds
Keen observers may have noticed yet another variable we haven’t addressed. The variable
jumpSound holds a cute little sound for when our character jumps. You know how to play sounds.
You know how to stop sounds. Where should you put the commands for playing and stopping
jumpSound? Hint: We only need to hear the sound when the character jumps.

	bookcover
	itGirls2018InstructionalBooklet

